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We study the band structures of one-dimensional �1D� photonic crystals �PCs� in the subwavelength limit. A
“spatial-averaged single-negative” �SASN� gap whose edges correspond to zero �volume� averaged permittiv-
ity ��̄=0� and zero �volume� averaged permeability ��̄=0� will appear when metamaterial is included in the
PC. Unlike the Bragg gap, the frequency range of the SASN gap is invariant to the geometrical scaling and
insensitive to the incident angle and disorder. In the subwavelength limit, both the zero-n̄ gap in the left-handed
1D PC and the zero-effective-phase gap in the single-negative 1D PC can be understood as SASN gaps. When
the subwavelength condition is not fulfilled, the zero-n̄ gap and zero-effective-phase gap begin to act
differently.

DOI: 10.1103/PhysRevE.75.046601 PACS number�s�: 42.70.Qs, 73.20.Mf, 41.20.Jb

Conventional photonic band gap �PBG� materials are a
type of artificial composites with periodically modulated di-
electric function, and the photonic gaps are a consequence of
Bragg scattering in these materials �1�. Therefore, the PBG
frequency is inversely proportional to the lattice constant,
and also, randomness will destroy the band gap �2�. Recently
left-handed materials �LHMs� with negative permittivity and
negative permeability, which were first suggested theoreti-
cally by Veselago �3�, have attracted much attention recently,
thanks to the experimental realization of such materials
�though anisotropic� at microwave frequencies �4� and the
theoretical awareness of using a LHM slab as a perfect lens
that will produce an image of any object with perfect reso-
lution �5�. Isotropic LHMs have been introduced, too �6�.

One-dimensional �1D� photonic crystal �PC� structures
consisting of alternating LHM and right-handed material
�RHM� layers have already been investigated through calcu-
lating the transmittance or the reflectance of the structures
�7�. The effects of photon tunneling and reflective Bragg re-
gion were observed. In Ref. �8�, a more interesting phenom-
enon is predicted by analysis as well as by numerical simu-
lation: when the volume average of the effective refractive
index equals zero, a new type of gap, named the zero-n̄ gap,
emerges. Unlike conventional Bragg gaps, the zero-n̄ gap is
invariant to the geometrical scaling of the superlattice and
insensitive to the wave polarization, angle of incidence, or
the period of the structure �8–11�. In a Fibonacci sequence
consisting of slabs of LHM and RHM, band structure also
shows that the zero-n̄ gap is less sensitive to the incident
angle and the polarization than the Bragg gap �12�. Recently,
the zero-n̄ gap was verified experimentally by measuring the
scattering parameters of a 1D layered stack composed of
LHM and RHM �13�. Moreover, it is found that typical broad
Bragg reflectivity peaks appearing in 1D LHM-RHM PCs
are very narrow �8,14�.

Besides the LHMs, materials with only one negative ma-
terial parameter have attracted interest �15,16�. Single-
negative �SNG� materials include the �-negative �ENG� me-

dia with negative permittivity and positive permeability and
the �-negative �MNG� media with negative permeability and
positive permittivity. A number of unique properties such as
resonance, complete tunneling, and transparency have been
found in MNG-ENG bilayer structure �16�. The transmission
properties of a 1D PC containing both kinds of SNG medium
shows the possession of a PBG with zero effective phase
�17,18�. The omnidirectional zero-effective-phase gap is in-
sensitive to incident angles or light polarizations and invari-
ant upon a change of scale length �18�. Such omnidirectional
gap results from the interaction of evanescent waves.

As we know, the physical origination of the zero-n̄ gap in
LHM-RHM PCs and the zero-effective-phase gap in MNG-
ENG PCs are quite different. In LHM-RHM PCs, the inter-
action of propagating waves causes the formation of PBGs.
When the supercell unit is of subwavelength size, the zero-n̄
gap originates mainly from the phase-shift cancellation in
every supercell unit, which differs itself from Bragg gaps.
When the supercell is much larger, the long-range interfer-
ence becomes the dominant factor in the formation of the
zero-n̄ gap. In contrast, PBGs in MNG-ENG PCs originate
from the interaction of evanescent waves. However, as is
mentioned above, two gaps show many similar properties. In
what follows, we focus our attention on understanding and
explaining this interesting phenomenon.

The 1D PC we are about to work on is periodic along the
longitudinal direction z, with a=d1+d2 being the corre-
sponding spatial periodicity. Here, d1 and d2 are the thick-
nesses of the two slabs contained in the primary unit super-
cell corresponding to the materials with �1 ,�1 and �2 ,�2,
respectively. Assuming that the electromagnetic field in the
supercell is a Bloch wave, i.e., F�z+a�=eikaF�z�, one can
easily derive the dispersion relationship of the photonic
modes �19�:

cos�k�d1 + d2�� = cos��1d1�cos��2d2�

−
1

2
�F2

F1
+

F1

F2
�sin��1d1�sin��2d2� , �1�

with

�i =
���i

��i

C
cos �i, Fi =� �i

�i
cos �i,

*Corresponding author. Electronic mail: zgwang
@mail.tongji.edu.cn

PHYSICAL REVIEW E 75, 046601 �2007�

1539-3755/2007/75�4�/046601�4� ©2007 The American Physical Society046601-1

http://dx.doi.org/10.1103/PhysRevE.75.046601


cos �i =�1 −
1

�i�i
� k�c

�
� �i = 1,2�

for s-polarized waves and

�i =
���i

��i

C
cos �i, Fi =��i

�i
cos �i,

cos �i =�1 −
1

�i�i
� k�c

�
� �i = 1,2�

for p-polarized waves. Here, �1,2 are the angles between the
propagating waves and the normal to the interface in the two
media, respectively. k� is the parallel part of the wave vector.
If the absolute value of the right-hand side of Eq. �1� is larger
than 1, the corresponding solution will have a nonzero
imaginary part, which means that the 1D PC does not sup-
port propagating Bloch modes.

In the subwavelength limit, i.e., �idi�1, one can expand
cos��idi� and sin��idi� in a Taylor series,
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2
+ O„��idi�2

… ,

sin��idi� = �1d1 + O��idi� . �2�

Substituting Eq. �2� into Eq. �1� and neglecting the high-
order terms, we have the dispersion relationship simplified as
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It is obvious that the band gap occurs at the position where
cos�k�d1+d2��=1. The gap edges appear as
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for p-polarized waves.
Equations �5a� and �5b� imply that a transmission gap

appears only if both the permeability and the permittivity
change signs across the interfaces of the two mediums. That
is to say, the structure must be an LHM-RHM or a ENG-

MNG superlattice but not a RHM-RHM nor an LHM-LHM
superlattice. In consideration of causality �20�, we define the
dispersive permeability and permittivity of the LHM in the
LHM-RHM superlattice as �10�

�1��� = �10 −
�

�2 , �1��� = �10 −
�

�2 . �6�

For the ENG-MNG superlattice, we set

�1 = �10, �1��� = �10 −
�

�2 �7a�

in MNG materials and

�2��� = �20 −
�

�2 , �2 = �20 �7b�

in ENG materials.
For normal incidence, i.e., k� =0, it is obvious that the

ratio of d1 to d2 is what really matters for the gap edges. The
actual geometrical size of the whole structure and the lattice
constant does not affect the position of the gap edges �see
Fig. 1�. One thing to note is that this special gap is the only
gap exhibiting this characteristic. The gaps in the higher- or
lower-frequency domain behave as Bragg gaps do. In addi-
tion, from effective medium theory, we know that this gap
appears in the frequency region where the whole structure is

(a)

(b)

FIG. 1. The band structures at normal incidence for different
cell sizes with the same d1 /d2=0.5. �a� LHM-RHM PC, �10=�10

=�2=1, �2=4, �=�=100; �b� ENG-MNG PC, �20=�10=1, �1

=�2=3, �=�=100.
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a spatial-averaged single-negative �SASN� structure; as such,
it is natural to see that the wave does not propagate in it.

For oblique incidence, we find that, for the SASN gap,
one gap edge is invariant with the change of k� while the
other is insensitive to this change. In contrast to the Bragg
gaps, k� for the SASN gap is limited by the light cone in a
small range around zero; thus, the impact of k� in Eqs. �5a�
and �5b� is relatively weak. As is shown in Fig. 2, the band
structure is plotted within the light cone, i.e., k� =� /c. In
contrast, the Bragg gap shows a large dependence on both k�

�i.e., the incident angle� and polarization.
Furthermore, the SASN gap shows insensitivity to disor-

der, which can be explained by Eqs. �5a� and �5b�, too. Keep-
ing the ratio of the thickness of the two neighboring slabs
constant, the position of the gap does not move even if the
periodicity is broken.

We demonstrate by simple calculation for normal inci-
dence that the gap edges of the zero-n̄ gap in LHM-RHM
structure �8,10� satisfy Eqs. �5a� and �5b� well. In Ref. �8�,
the author explained that, according to the dispersion rela-
tionship, when zero n̄ �i.e., ��1�����1d1+��2�����2d2=0�
is achieved, there is no real solution for the wave vector and
thus a PBG will be opened. That explains why this kind of
gap is named the zero-n̄ gap. It now raises a question for us
whether the SASN gap decided by Eqs. �5a� and �5b� is
exactly the same as the zero-n̄ gap or whether we can tell the
two gaps apart simply by changing the parameters. In gen-
eral, the frequency dependence of the effective permeability
and permittivity �e.g., Eq. �6� in this paper, Eq. �13� in Ref.
�8�� is monotonically increasing, so it is easy to see that the
frequency for zero n̄ is between the frequencies for zero �̄
and zero �̄. Therefore, it will be impossible to tell the two
gaps apart.

We also compare gap edges of the zero-effective-phase
gap in Refs. �17,18� with the SASN gap-edge condition at
normal incidence and find that they satisfy Eqs. �5a� and
�5b�, too. The consistency can also be verified by the gap-
edge condition in an equivalent transmission-line model �Eq.
�6� in Ref. �17��.

The zero-effective-phase gap in the ENG-MNG structure
and the zero-n̄ gap in the LHM-RHM structure should be
considered as the same kind of PBGs, since their gap-edge
conditions satisfy the same parameter equations. This sounds
ridiculous, but actually, it is understandable. Fredkin and
Ron �15� have shown that a layered structure with alternating
slabs of ENG and MNG materials may effectively behave as
an LHM, because the effective group velocity in such a
structure would be antiparallel with the effective phase ve-
locity. The behavior of the wave propagation within the two
structures is different, but for a short range of distance, the
difference is negligible, since the trigonometric sinusoidal
and hyperbolic sinusoidal functions are similar in a small-
argument approximation. One can then anticipate a “thin”
ENG-MNG pair to function like a thin LHM-RHM pair. This
equivalence has been demonstrated by transmission-line
models �21�. Propagating waves are absent in each layer
since the wave vectors are complex, but in the whole peri-
odic structure propagation modes still exist. The appearance
of propagation modes can be explained with the aid of a
tight-binding model in solid-state physics. When SNG layers
construct a periodic structure, the localized interface modes
in each period will interact and thus split. In other words, the

(a)

(b)

FIG. 3. The variance of the zero-n̄ gap and the zero-effective-
phase gap with scaling. The ratio of d1 to d2 is kept as constant:
d1 /d2=0.5. �a� Zero-n̄ gap in LHM-RHM PCs. The material param-
eters are the same as Fig. 1�a�. �b� Zero-effective-phase gap in
ENG-MNG PCs. The material parameters are the same as Fig. 1�b�.

FIG. 2. The band structure of LHM-RHM PCs for different k�

within the cone of light. The parameters are �10=1.21, �10=1, �2

=4, �2=1, �=�=100, d1=0.006 m, and d2=0.012 m.

BAND STRUCTURES OF ONE-DIMENSIONAL … PHYSICAL REVIEW E 75, 046601 �2007�

046601-3



interface modes will couple each other and form propagation
modes.

However, our SASN condition �Eqs. �5a� and �5b�� is only
valid in the subwavelength limit, seeing that the effective
medium theory will lose its validity and the concept of a
SASN gap becomes meaningless when the subwavelength
condition is not fulfilled. Keeping d1 /d2 constant and in-
creasing the geometrical size of the cell, we find in Fig. 3�a�
that the zero-n̄ gap in LHM-RHM superlattices narrows
down gradually with some small oscillations to the central
frequency corresponding to zero n̄. The gap width becomes
sensitive to scaling when the cell is large enough. Closures
of the gap appear when the optical path length of each slab
equals any integer multiples of a half-wavelength. As for the
SNG superlattice �see Fig. 3�b��, the gap shrinks to a certain
frequency monotonically. The oscillations in Fig. 3�a� origi-
nate from the Bragg interference of the propagating waves,
while in Fig. 3�b� they are absent since there are only eva-
nescent waves.

In conclusion, in the subwavelength limit, we find an

SASN gap appearing in the 1D PC constructed by LHM-
RHM or ENG-MNG superlattice structure. The SASN gap is
invariant to scaling and insensitive to disorder or incident
angle. These unusual properties offer a potential for new de-
vices such as highly directive sources, wave front converters,
or delay lines with zero phase difference between the input
and output ports �22,23�. The discovery of the analytical pa-
rameter relationship of SASN gap edges sheds light on more
convenience and accuracy in tuning the bandwidth. When
the subwavelength condition is no longer satisfied, two gaps
begin to behave differently owing to the different wave
modes in different structures. These unusual properties will
disappear in that case.
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